Элементарные двигательные рефлексы у человека сухожильные и др

Движения человека являются комплексом различных двигательных актов, которые обеспечиваются как сравнительно простыми двигательными рефлексами, так и сложнейшими их комбинациями.

Двигательные акты различной сложности. Рассматривая различные двигательные акты человека, можно выделить

  • элементарные двигательные рефлексы,
  • более сложные – ритмические рефлексы и, наконец,
  • особенно сложные формы двигательной деятельности, обеспечивающие поведение человека.

Элементарные двигательные рефлексы. При сложных движениях человека используются элементарные двигательные рефлексы, осуществляемые спинным мозгом. К простым безусловным двигательным рефлексам спинного мозга относятся:

  • рефлексы, на растяжение (миотатические и сухожильные рефлексы),
  • сгибательные рефлексы на раздражение кожных рецепторов (рефлексы удаления от раздражителя)
  • рефлексы отталкивания (рефлексы сближения с опорой).

Миотатические и сухожильные рефлексы возникают при растяжении рецепторов мышц и сухожилий. Быстрое растягивание этих рецепторов рефлекторно вызывает фазное сокращение скелетных мышц. Это рефлекс активного противодействия мышцы ее растяжению. Рефлекторная дуга рефлекса на растяжение – моносинаптическая. Простота рефлекторной дуги обеспечивает быструю и точную реакцию мышцы, меньшую утомляемость рефлекторных ответов.

Рефлексы на растяжение имеют большое значение при статической деятельности мышц для поддержания определенной позы, а также при осуществлении локомоторных актов (ходьбы, бега и др.). В произвольной двигательной деятельности человека иногда необходимо подавлять эти рефлексы (например, выполнение гимнастического шпагата требует подавления рефлекса на растяжение).

При раздражении рецепторов кожи (болевых, температурных и др.) возникает сокращение мышц-сгибателей, которое позволяет отдернуть конечность от повреждающего раздражителя. Этот сгибательный кожный рефлекс носит защитный характер. В его основе лежит полисинаптическая рефлекторная дуга. В отличие от моносинаптического рефлекса на растяжение при сгибательном рефлексе быстрее наступает утомление; время этого рефлекса в связи с наличием вставочных нейронов значительно больше.

Одна из разновидностей элементарных рефлексов спинного мозга – рефлекс отталкивания, описанный Ч. Шеррингтоном. Этот рефлекс возникает при раздражении кожи стопы опорой. Однако, в Отличие от сгибательного рефлекса, он приводит не к отдергиванию конечности от раздражителя, а к сближению с раздражителем. В первом случае мы имеем защитный рефлекс, предохраняющий организм от разрушения. Во втором случае – биологически целесообразный акт, обеспечивающий контакт с опорой при стоянии и отталкивание от нее при передвижениях. Этот рефлекс лежит в основе сложных локомоций: ходьбы, бега, прыжков в длину ил' высоту и др.

Ритмические рефлексы. Составной частью различных сложных двигательных действий, как произвольных, так и непроизвольных, часто являются ритмические рефлексы. Они особенно выражены при выполнении циклических движений. Их возникновение и протекание связаны с проявлением механизмов взаимосочетанной (реципрокной) иннервации мышц-антагонистов, при которой возбуждение центров-сгибателей сопровождается одновременным торможением центров мышц-разгибателей. При этом проявляется и, так называемый, рефлекс отдачи: после акта сокращения наступает расслабление, а затем снова акт сокращения. Рефлекс отдачи – это рефлекс на растяжение с проприорецепторов мышц и сухожилий, в результате которого возникает сокращение растянутого разгибателя. Такая простая форма ритмического рефлекса часто встречается в двигательной деятельности человека (например, при забивании молотком гвоздей).

Эта форма рефлексов – одна из древних и относительно простых форм – имеет большое значение в организации многих сложных движений. Например, включение ритмических циклоидных движений в акт письма позволяет человеку перейти от отдельного начертания букв к обычной письменной скорописи; то же самое происходит при освоении акта ходьбы – переход от отдельных шагов к ритмической походке (Н. А. Бернштейн).

Наиболее простая форма ритмического рефлекса – чесательный рефлекс животных, который обеспечивается попеременным сокращением и расслаблением одних и тех же мышц одной конечности. Более сложная форма – шагательный рефлекс, лежащий в основе ходьбы, бега и других локомоций. Подключение второй конечности к координированному двигательному акту происходит в результате осуществления перекрестного рефлекса. Этот рефлекс осуществляется с участием вставочных тормозных нейронов (клеток Рэншоу), вызывающих торможение мотонейронов на противоположной стороне спинного мозга. В целостном организме человека сгибание одной ноги вызывает перекрестный разгибательный рефлекс другой ноги, принимающей на себя тяжесть тела при стоянии, ходьбе и пр.

В осуществлении шагательного рефлекса принимает участие и мозжечок. Удаление одного его полушария у животных приводит к искажению движений (особенно передней конечности). Движения сильно варьируют по амплитуде, заметно искажаются при малейших посторонних воздействиях, происходит чрезмерное сгибание локтевого сустава в фазе переноса конечности.

Протекание ритмических рефлексов, в том числе шагательного, связано с деятельностью различных отделов неспецифической системы. При активирующих влияниях происходит нарастание амплитуды движений, а при угнетающих влияниях – ее снижение.

Важное значение, в регуляции ритмических рефлексов, имеют подкорковые ядра – бледное ядро и полосатое тело, обеспечивающие их автоматическое протекание, содружественные движения конечностей, вспомогательные реакции (фиксацию суставов и др.).

Высшим регулятором рефлексов является кора больших полушарий, особенно ее премоторная область. Благодаря коре ритмические движения (например, простой акт ходьбы) приобретают определенное смысловое значение, включаются как составной элемент сложные акты поведения.

Сложные формы двигательной деятельности. В целостном поведении простые рефлексы, сочетаясь, обусловливают сложные двигательные действия. Социальные условия жизни человека намного усложняют его двигательную деятельность, приводя к появлению специально человеческих форм движений: бытовых, производственных, спортивных. Простые и сложные ритмические рефлексы лежат в основе циклической двигательной деятельности человека: ходьбы, бега, плавания, гребли, ходьбы на лыжах, езды на велосипеде и пр. Большое значение в их осуществлении имеют механизмы реципрокной иннервации мышц-антагонистов.

Однако в целом ряде движений механизмов реципрокной иннервации мышц-антагонистов становится недостаточно, требуется одноименная работа мышц-антагонистов – в одной конечности или даже в обеих. В этих случаях реципрокные отношения, характерные для спинного мозга, подавляются центрами головного мозга. Особенно часто встречаются симметричные (а не реципрокно-перекрестные) движения в деятельности верхних конечностей человека, т. е. происходит одновременное сокращение одноименных мышц левой и правой рук.

Наиболее сложные формы движений представляют собой многофазную цепь рефлексов, которая основана уже не на элементарных реципрокных отношениях, а является целостным двигательным навыком, образующимся в процессе обучения по механизму условных рефлексов.

УДАР ПО СУХОЖИЛИЮ


Толстая мышца сильнее тонкой.

Сядьте на стул. Закиньте ногу на ногу. Проведите рукой от коленной чашечки вниз, придавливая руку к ноге. Вы ощутите сначала ямку, а затем твердый выступ на кости. На пути от коленной чашечки до этого выступа идет сухожилие четырехглавой мышцы бедра. Ударьте по сухожилию ребром ладони. Произойдет короткое разгибание ноги в колене.

Это сокращается четырехглавая мышца, разгибающая ногу в коленном суставе.

Механизм коленного, или сухожильного, рефлекса такой. При ударе по сухожилию четырехглавая мышца быстро растягивается. При этом раздражаются заложенные в ней в месте ее перехода в сухожилие особые окончания чувствующих нервов — мышечные и сухожильные веретена. Возникшее в них возбуждение распространяется по чувствующему нерву до спинного мозга, а оттуда переключается на двигательный нерв и направляется опять все в ту же четырехглавую мышцу. Поэтому-то она и сокращается, а колено разгибается.

Коленный рефлекс — пример рефлекса на растяжение, который может возникнуть во всякой мышце. В ответ на растягивание мышца сокращается, чем противодействует растяжению. Благодаря рефлексу на растяжение мышцы быстро восстанавливают нарушенное по какой-либо причине положение частей тела.


Механизм коленного рефлекса

У человека можно наблюдать и другие двигательные рефлексы. Вот один из них.

РУКА-МАЯТНИК

Прибор для опыта сравнительно прост. Это легкая площадка. Она может двигаться в горизонтальной плоскости вокруг вертикальной оси. Благодаря шарикоподшипниковым шарнирам трение ее при движении ничтожно. Прибор можно закрепить на столе. Испытуемого просят сесть в удобной позе за стол, положить руку на площадку, закрыть глаза и расслабить мышцы. Экспериментатор начинает раскачивать площадку. От этого рука испытуемого попеременно сгибается и разгибается в локтевом суставе. Но вот в какой-то момент экспериментатор перестает раскачивать площадку. Испытуемый этого даже не замечает, рука его продолжает качаться, как маятник. Может пройти немало времени, прежде чем испытуемый спохватится, что это он сам качает руку.

Мы воспроизвели ритмический двигательный рефлекс. Он происходит потому, что в нервных центрах, связанных со сгибательными и разгибательными мышцами, ритмически чередуются процессы возбуждения и торможения: когда один центр возбужден, другой заторможен. Возбуждение сменяется торможением, а торможение — возбуждением. Сгибание чередуется с разгибанием.

Такое чередование, такая смена возбуждений и торможений — важное свойство нервных центров. Благодаря ему ритмические движения поддерживаются как бы автоматически, они не требуют постоянного напряжения внимания и поэтому совсем не утомительны.

ШАГАЮЩИЙ АВТОМАТ

Более сложную форму ритмического рефлекса можно увидеть в опыте над животными.

В аудиторию внесли собаку. У нее был перерезан спинной мозг, и поэтому она не могла управлять своими задними конечностями. Собаку подвесили на лямках за переднюю часть тела, и она бессильно повисла на штативе.

Лектор взял заднюю лапу собаки, согнул ее и отпустил. Лапа под действием силы тяжести опустилась, разогнулась. Но, к удивлению аудитории, в этот момент начала сгибаться и подниматься другая лапа. Затем она стала разгибаться, и в это время неожиданно начала сгибаться первая лапа.

Перед нами шагательный рефлекс. Это — сложное взаимодействие нервных центров спинного мозга. Оно тоже связано с чередованием процессов возбуждения и торможения, но теперь уже не в пределах одной только конечности, как это было в ритмическом рефлексе. В данном опыте взаимодействие центров сгибателей и разгибателей охватило уже обе конечности.

Шагательная координация у четвероногих животных охватывает не две, а четыре конечности, и возбуждение и торможение центров сгибателей и разгибателей распределяются как бы крест-накрест.

У многих животных (копытных) к моменту рождения уже вполне готов шагательный рефлекс. У незрелорождающихся животных и человека рефлексы ходьбы развиваются значительно позднее.

РУКА ПОДНИМАЕТСЯ САМА


Справа — рука упирается в стену; слева — рука после этого поднимается сама.

Познакомимся еще с одним двигательным рефлексом. Станьте боком к стене. Прижмите к ней руку тыльной стороной кисти. Нажимайте ею на стену, пока не почувствуете усталость в плече. После этого отступите от стены и расслабьте руку. Что это? Она сама поднимается. Вы ощущаете какую-то невесомость. Вам надо даже сделать небольшое усилие, чтобы опустить руку.

Этот опыт произвел ученый А. А. Ухтомский. Он рассказывает нам о тонусе мышц. Тонус мышц — это длительное непроизвольное мышечное напряжение. Когда мы прижимали руку к стене, мышцы руки напряглись, а после напряжения мышечный тонус усилился и мышца начала уже непроизвольно сокращаться.

Слабый мышечный тонус имеется всегда. Посмотрите на свои руки. Они несколько согнуты в локте. Это происходит потому, что двуглавая мышца находится в состоянии тонуса. Она несколько напряжена и поддерживает руку согнутой.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.


III. Примеры двигательных рефлексов.

1. Мышечные рефлексы растяжения и торможения.

Рассмотрим мышечный рефлекс растяжения. Он предназначен для того, чтобы регулировать положение конечностей, обеспечивать неподвижное положение тела, поддерживать тело во время того, как оно стоит, лежит или сидит. Этот рефлекс поддерживает постоянство мышечной длины. Растяжение мышцы вызывает активацию мышечных веретен и сокращение, т. е. укорочение мышцы, противодействующей ее растяжению. Например, когда человек сидит, происходит растяжение мышц брюшного пресса и повышение их тонуса, противодействующее сгибанию спины. И наоборот, слишком сильное сокращение мышцы ослабляет стимуляцию ее рецепторов растяжения, мышечный тонус ослабевает

Рассмотрим прохождение нервного импульса по рефлекторной дуге. Следует сразу отметить, что мышечный рефлекс растяжения относится к простейшим рефлексам. Он проходит непосредственно от сенсорного нейрона к двигательному (рис.1). Сигнал (раздражение) поступает от мышцы на рецептор. По дендритам сенсорного нейрона импульс проходит в спинной мозг и там кратчайшим путем проходит в двигательный нейрон соматической нервной системы, а далее по аксону двигательного нейрона импульс попадает на эффектор (мышцу). Таким образом, осуществляется мышечный рефлекс растяжения.


Рис.1. 1 – мышца; 2 – мышечные рецепторы; 3 – сенсорный нейрон; 4 – двигательный нейрон; 5 – эффектор.

Другим примером двигательного рефлекса является рефлекс торможения. Он возникает как ответ на действие рефлекса растяжения. Тормозная рефлекторная дуга включает два центральных синапса: возбуждающий и тормозной. Можно сказать, что в данном случае мы наблюдаем работу мышц-антагонистов в паре, например, сгибателя и разгибателя в суставе. Мотонейроны одной мышцы тормозятся во время активации другого компонента пары. Рассмотрим сгибание коленного сустава. При этом мы наблюдаем, растяжение мышечных веретен разгибателя, что усиливает возбуждение мотонейронов и торможение мотонейронов сгибателя. Кроме того, уменьшение растяжения мышечных веретен сгибателя ослабляет возбуждение гомонимных мотонейронов и реципрокное торможение мотонейронов разгибателя (растормаживание). Под гомонимными мотонейронами мы понимаем все те нейроны, которые посылают аксоны к одной и той же мышце или возбуждают ту мыщцу, от которой берет начало соответствующий путь от перефирии к нервному центру. А реципрокное торможение – это процесс в нервной симстеме, основанный на том, что по одному и тому же афферентному пути осуществляется возбуждение одних групп клеток и торможение других групп клеток через втавочные нейроны. В конечном счете, мотонейроны разгибателей возбуждаются, а сгибателей – сокращаются. Таким образом, происходит регуляция длины мышцы.

Рассмотрим прохождение нервного импульса по рефлекторной дуге. Нервный импульс зарождается на мышце разгибателя и по аксонам сенсорного нейрона проходит в спинной мозг. Так как данная рефлекторная дуга относится к дисинаптическому типу, то импульс раздваивается, одна часть попадает на мотонейрон разгибателя для поддрежания длины мышцы, а другая – на мотонейрон сгибателя, происходит торможение разгибателя. Затем каждая часть нервного импульса переходит на соответствующий эффектор. Либо, в спинном мозге возможен переход на мотонейрон сгибателей коленного сустава через тормозные синапсы, которые позволяют изменять длину мышцы, а затем по двигательным аксонам выход на концевые пластинки (эффектор, скелетную мышцу). Возможны два других варианта, когда возбуждение воспринимает рецептор сгибателя, тогда рефлекс проходит по такому же пути.


ОРис.2 1. Мышца разгибатель. 2. Мышца сгибатель. 3. Мышечный рецептор. 4. Сенсорные нейроны. 5. Тормозные интернейроны. 6. Двигательный нейрон. 7. Эффектор

Познакомимся теперь с более сложными рефлексами.

2. Сгибательный и перекрестный разгибательный рефлекс.

Как правило, рефлекторные дуги включают в себя два и более последовательно связанных нейронов, т. е. являются полисинаптическими.

Примером может служить защитный рефлекс у человека. При воздействии на конечность, она отдергивается путем сгибания, например, в коленном суставе. Рецепторы данной рефлекторной дуги находятся в коже. Они обеспечивают движение, направленное на удаление конечности от источника раздражения.

При раздражении конечности происходит сгибательный рефлекс, конечность отдергивается, а противоположенная выпрямляется. Так происходит в результате прохождения импульса по рефлекторной дуге. Воздействуем на правую ногу. От рецептора правой ноги по аксонам сенсорного нейрона импульс попадает в спинной мозг, далее он направляется на четыре разных интернейроновых цепи. Две цепи идут на мотонейроны сгибателя и разгибателя правой ноги. Происходит сокращение мышцы сгибателя, а разгибатель расслабляется под воздействием тормозных интернейронов. Мы отдергиваем ногу. В левой ноге происходит расслабление мышцы сгибателя и сокращение мышцы разгибателя под воздействием возбуждающего интернейрона.


РисЧерные – тормозные интернейроны; красные возбуждающие. 2. Двигательные нейроны. 3.Эффекторы расслабленных мышц сгибателя и разгибателя. 4. Эффекторы сокращенных мышц сгибателя и разгибателя.

3. Сухожильный рефлекс.

Сухожильные рефлексы служат для поддержания постоянства напряжения мышцы. У каждой мышцы есть две регулирующие системы: регуляция длины, с помощью мышечных веретен в роли рецепторов и регуляция напряжения, в роли рецепторов в данной регуляции выступают сухожильные органы. Отличие системы регуляции напряжении от системы регуляции длины, в которой задействованы мышца и ее антагонист, заключается в использовании сухожильным рефлексом мышечного тонуса всей конечности.

Развиваемая мышцей сила зависит от её предварительного растяжения, скорости сокращения, утомления. Отклонение от мышечного напряжения от нужной величины регистрируется сухожильными органами и корректируется сухожильным рефлексом.

Рецептор (сухожилие) данного рефлекса находится в сухожилии конечности на конце мышцы сгибателя или мышцы разгибателя. Оттуда, по аксонам сенсорного нейрона сигнал проходит в спинной мозг. Там сигнал может пройти по тормозному интернейрону на двигательный нейрон разгибателя, который отправит сигнал на мышцу разгибатель, для поддержания мышцы в напряжении. Также сигнал может пойти на возбуждающий интернейрон, который отправит сигнал через двигательный аксон на эффектор сгибателя, для изменения напряжения мышцы и совершения определенного действия. В случае, когда возбуждение воспринимает рецептор (сухожилие) сгибателя, сигнал проходит через аксон сенсорного нейрона на интернейрон, а оттуда, на двигательный мотонейрон, который по аксонам двигательного нейрона посылает сигнал в мышцу сгибателя. В рефлекторной дуге сгибателя возможен путь только через тормозной интернейрон.


Рис.Сухожильный рецептор. 2. Сенсорный нейрон. 3. Тормозной интернейрон. 4. Возбуждающий интернейрон. 5. Двигательный нейрон. 6. Рецептор.

Большинство рефлексов, имеющих важное значение для самосохранения, поддержки положения тела, быстрого восстановления равновесия, осуществляется на основе "быстродействующих механизмов" и минимальным количеством причастных нейронных цепей. Сухожильные рефлексы, нервные центры которых расположены на разных уровнях спинного мозга, представляют большой интерес в клинической практике, как тест функционального состояния организма в целом и локомоторного аппарата в частности, а также для топической диагностики при повреждениях спинного мозга.

Сухожильные рефлексы называются еще миотатичнимы, или Т-рефлексами (от лат. Tendo - сухожилия), поскольку вызываются растяжением мышц при ударе неврологическим молоточком в месте проекции соответствующего сухожилия. Однако сухожильные рецепторы при постукивании молоточком НЕ раздражаются, потому что есть высокопороговых, их активация происходит только при растяжении мышцей. Клинически важные рефлексы на растяжение мышечных веретен (миотатични) представлены в табл. 4.1 и на рис. 4.11.

К сухожильных рефлексов также относят:

Периостальный пястно-лучевой рефлекс, вызываемый ударом молоточка по сухожилию шиловидного отростка лучевой кости. реакция


РИС. 4.10. Контур рефлекса на растяжение (А) и рефлекторная дуга спинального миотатичного рефлекса (Б): 1 - мотонейроны мышц-разгибателей; 2 - мотонейроны мышц-сгибателей; 3 - тормозной нейрон; 4 - мышечное веретено. Знак "+" - возбуждения. Знак "-" - торможение

ТАБЛИЦА 4.1. Миотатични сухожильные рефлексы

Название рефлекса ке растяжения

Раздражение, что приводит к активации рецепторов мышц - мышечных веретен

Характер рефлекторного ответа

Место нахождения нервного центра рефлекторной дуги в спинном мозге

Локтевой изгибающий рефлекс предплечья

Постукивание неврологическим молоточком по сухожилию т. biceps brachii

V-IV шейные сегменты

Разгибательный рефлекс предплечья

Постукивание неврологическим молоточком по сухожилию т. triceps brachii

VII-VIII шейные сегменты

Легкий удар неврологическим молоточком по сухожилию ниже надколенника

III-IV поясничные сегменты

Удар неврологическим молоточком по пяточном (ахилловом) сухожилию

Подошвенное сгибание стопы

1-II крестцовые сегменты


РИС. 4.11. Рефлексы с верхних и нижних конечностей

в ответ - сгибание руки в локтевом суставе, пронация кисти и сгибание пальцев. Составные части рефлекторной дуги: нервы - срединный, лучевой, мышечно-кожный; V-VIII шейные сегменты спинного мозга, иннервирующих мышцы-пронаторы, плече-лучевой мышцу, сгибатели пальцев, двуглавая мышца плеча.

Н-рефлекс растяжения (Гофмана) вызывается у человека электрическим раздражением в подколенной ямке большеберцовой нерва. Эффектор - Камбалообразные мышцу. Регистрация электромиографического.

Сухожильные рецепторы Гольджи и двигательные спинальные рефлексы с рецепторов сухожилий

Сухожильные рецепторы Гольджи - это веретенообразные структуры, состоящие из сухожильных (коллагеновых) нитей, которые отходят от 9-13 экстрафузальных мышечных волокон и многочисленных ветвей безмиелиновых нервных окончаний, которые являются продолжениями толстых миелиновых волокон типа lb (Αβ), окруженных капсулой, граничащей с мышцей. Нервные волоконца содержатся среди пучков сухожильных нитей в заполненном жидкостью пространстве (рис. 4.12).

Рефлексы с рецепторов Гольджи возникают при их растяжении сокращенным скелетных мышц, с которым соединено сухожилия. Информация от сухожильных рецепторов передается афферентными нервными волокнами группы Αβ в задние рога спинного мозга и через интернейронов вызывает торможение альфа мотонейронов, иннервирующих мышцы, которые сокращаются; это приводит к их расслаблению. Мотонейроны, которые иннервируют мышцы-антагонисты, возбуждаются, возникает их сокращение (рис. 4.13).


РИС. 4.12. Строение сухожильного рецептора Гольджи

Таким образом, каждый скелетная мышца имеет две системы обратной связи с нервным центром при осуществлении рефлекторной регуляции:

первая система обратной связи - это сигнализация от мышечных веретен о скорости сокращения и длину мышцы;

вторая система обратной связи - информация от сухожильных рецепторов Гольджи о степени напряжения (силу сокращения) скелетной мышцы.


РИС. 4.13. Строение рефлекторных дуг при раздражении сухожильных рецепторов Гольджи. Знак "+" - возбуждение, знак "-" торможения

Таким образом, с рецепторами Гольджи связано как сокращение, так и расслабление мышцы. Если интрафузальных волокна определяют длину мышцы и изменения его длины, то сухожильные - напряжение мышцы, которая изменяет собственное напряжение рецептора.

Физиологическую роль рефлексов с рецепторов сухожилий определяют как защитные рефлексы, потому сильное сокращение мышц, что приводит к растяжению сухожилий и активации высокопороговых сухожильных рецепторов, может привести к повреждению как мышц, так и сухожилий. Хотя эти рефлексы относятся к защитным рефлексов, основная их роль заключается в регуляции напряжения мышц при нормальном их сокращении. Рефлексы с рецепторов сухожилий показывают, что сила сокращения мышцы является стимулом, который приводит к своего собственного расслабления.

Выполнение двигательных актов осуществляется обширным комплексом нейрон ов, расположенных в различных отделах ЦНС. Такая функциональная система управления движениями являетсямногоэтажной и многоуровневой.

Решающим фактором поведения является полезный результат. Для его достижения в нервной системе формируется группа взаимосвязанных нейрон ов — функциональная система (П. К.Анохин, 1975). Деятельность ее включает следующие процессы: 1) обработка всех сигналов, поступающих из внешней и внутренней среды организма — так называемый афферентный синтез; 2) принятие решения о цели и задачах действия; 3) создание представления об ожидаемом результатеи формирование конкретной программы движений; 4) анализ полученного результата и внесение в программу поправок — сенсорных коррекций.

В двигательной деятельности человека различают произвольные движения — сознательно управляемые целенаправленные действиям непроизвольные движения, происходящие без участия сознания и представляющие собой либо безусловные реакции, либо автоматизированные двигательные навыки. В основе управления произвольными движениями человека лежат два различных физиологических механизма: 1) рефлекторное кольцевое регулирование и 2) программное управление по механизму центральных команд.

Замкнутая система рефлекторного кольцевого регулирования характерна для осуществления различных форм двигательных действий и позных реакций, не требующих быстрого двигательного акта. Это позволяет нервным центрам получать информацию о состоянии мышц и результатах их действий по различным афферентным путям и вносить поправки в моторные команды по ходу действия.

Программное управление по механизму центральных команд — это механизм регуляции движений, независимый от афферентных проприоцептивных влияний. Такое управление используется в случае выполнения кратковременных движений (прыжков, бросков, ударов, метаний), когда организм не успевает использовать информацию от проприо рецептор ов мышц и других рецептор ов. Вся программа должна быть готова еще до начала двигательного акта.При этом отсутствует замкнутое кольцо регуляции. Управление производится по так называемойоткрытой петле, а активность во многих произвольно сокращающихся мышцах возникает раньше, чем регистрируется обратная афферентная импульсация. Например, при выполнении прыжковых движений электрическая активность в мышцах, направленная на амортизацию удара, возникает раньше, чем происходит соприкосновение с опорой, т. е. она носит предупредительный характер.

Такие центральные программы создаются согласно сформированному в мозге (главным образом — в ассоциативной переднелобной области коры) образу двигательного действия и цели движения. В дальнейшей конкретной разработке моторной программы принимают участие мозжечок ( латерал ьная область его коры) и базальные ядра (полосатое тело и бледное ядро). Информация от них поступает через таламус в моторную и премоторную области коры и далее — к исполнительным центрам спинного мозга и скелетным мышцам.

Механизм кольцевого регулирования является более древним филогенетически и возникает раньше в процессе индивидуального развития. Примерно к трем годам достаточное развитие получают зрительные обратные связи, осуществляющие текущий зрительно-моторный контроль, а с 5-6 лет происходит переход к текущему контролю движений с участием проприоцептивных обратных связей. Этот механизм достигает значительного совершенства к 7-9 летнему возрасту, после чего начинается переход к формированию механизма центральных команд. К 10-11 годам повышение скорости произвольных движений обеспечивается достаточным развитием процессов предварительного программирования их пространственных и временных параметров. С этого возраста представлены оба механизма управления произвольными движениями, дальнейшее совершенствование которых продолжается вплоть до 17-19лет.

Среди многоэтажных систем нервных центров обобщенно можно выделить три основных функциональных блока (Лурия А. Р., 19 7 3):

  • блок регуляции тонуса, уровня бодрствования;
  • блок приема, переработки и хранения информации;
  • блок программирования, регуляции и контроля двигательной деятельности.

К первому функциональному блоку относятся неспецифические отделы нервной системы, в частности ретикулярная формация ствола мозга, которые модулируют функциональное состояние вышележащих и нижележащих отделов, вызывая состояния сна, бодрствования, повышенной активности, увеличивая пли уменьшая мощность двигательных реакций.

Третий функциональный блок расположен в передних отделах больших полушарий. В его состав входят первичные (моторные) и вторичные (премоторные) поля, а высшим отделом являются ассоциативные переднее-лобные (или префронтальные) области (передние третичные поля). Этот блок с участием речевых функций выполняет универсальную реакцию общей регуляции поведения, формируя намерения и планы, программы произвольных движений и контроль за их выполнением.

Роль различных отделов ЦНС в регуляции позно-тонических реакций

Мышечная деятельность включает в себя процессы осуществления двигательных актов и процессы поддержания позы тела. Эти процессы регулируются различными отделами ЦНС.

Мышечный тонус является по своей природе рефлекторным актом. Для его возникновения достаточна рефлекторная деятельность спинного мозга. При длительном растяжении мышц в поле силы тяжести возникает постоянное раздражение их проприо рецептор ов, потоки импульсов от которых проходят по толстым афферентным волокнам в спинной мозг, где передаются непосредственно (безучастия вставочных нейрон ов) на альфа-мото нейрон ы передних рогов и вызывают тоническое напряжение мышц. Такие двух нейрон ные (или моносинаптические) рефлекторные дуги лежат в основе тонических сухожильных (с рецептор ов сухожилий) и миотатических рефлексов на растяжение (с рецептор ов мышечных веретен). Это рефлексы активного противодействия мышцы ее растяжению. В произвольной двигательной деятельности человека иногда требуется подавление этих рефлексов, например, при выполнении шпагата.

Степеньтонического напряжения мышцы зависит от частоты импульсов, посылаемых к ней альфа-мото нейрон ами. Однако, потоки этих импульсов могут регулироваться вышележащими этажами нервной системы, в частности, неспецифическими отделами ствола мозга с помощью так называемой гамма — регуляции. Разряды гамма-мото нейрон ов спинного мозга под влиянием ретикулярной формации повышают чувствительность рецептор ов мышечных веретен. В результате при той же длине мышцы увеличивается поток импульсов от рецептор ов к альфа-мото нейрон ам и далее к мышце, повышая ее тонус.

В регуляции тонуса участвует также медленная часть пирамидной системы и различные структуры экстрапирамидной системы (подкорковые ядра, красные ядра и черная субстанция среднего мозга, мозжечок, ретикулярная формация ствола мозга, вестибулярные ядра продолговатого мозга).

Неспецифическая система вызывает общее изменение тонуса различных мышц: усиление тонуса осуществляет активирующий отдел ретикулярной формации среднего мозга, а угнетение — тормозящий отдел продолговатого мозга. В отличие от нее специфическая система (моторные центры коры больших полушарий и ствола мозга) действует избирательно, т. е. на отдельные группы мышц-сгибателей или разгибателей. Усиление тонуса мышц-сгибателей вызывают корковые влияния, передающиеся непосредственно к нейрон ам спинного мозга но корково-спинномозговой (пирамидной) системе, а также через красные ядра (по корково-красноядерно-спинномоз-говой системе) и частично через ретикулярную формацию (по ретикуло-спинномозговой системе). В противоположность им, влияния, передающиеся через вестибулярные ядра продолговатого мозга к вставочным и двигательным нейрон ам передних рогов спинного мозга (по вестибуло-спинномозговым путям), вызывают тоническое повышение возбудимости мото нейрон ов мышц-разгибатслей. что обеспечивает повышение тонуса этих мышц.

Мозжечок формирует правильное распределение тонуса скелетных мышц: через красные ядра среднего мозга он повышает тонус мышц-сгибателей, а через вестибулярные ядра продолговатого мозга — усиливает тонус мышц-разгибателей. В поддержании позы и равновесия тела, регуляции тонуса мышц основное значение имеет медиальная продольная зона мозжечка — кора червя. При мозжечковых расстройствах падает тоническое напряжение мышц (атония) и вследствие ненормального распределения тонуса мышц конечностей возникает нарушение походки (атаксия).

Бледное ядро угнетает тонус мышц, а полосатое тело снижаем его угнетающее действие.

Высший контроль тонической активности мышц осуществляет кора больших полушарий, в частности ее моторные, премоторные и лобные области. С ее участием происходит выбор наиболее целесообразной для данного момента позы тела, обеспечивается ее соответствие двигательной задаче. Непосредственное отношение к регуляции тонуса мышц имеют медленные пирамидные нейрон ы положения. Корковые влияния на тонические реакции мышц передаются через медленную часть пирамидного тракта и через экстрапирамидную систему.

Специальная группа рефлексов способствует сохранению позы — это так называемыеустановочные рефлексы. К ним относятся статические и стато-кинетические рефлексы, в осуществлении которых большое значение имеют продолговатый и средний мозг.

Статические рефлексы возникают при изменении положения тела или его частей в пространстве: 1) при изменениях положения головы в пространстве — лабиринтные рефлексы, возникающие при раздражении рецептор ов вестибулярного аппарата. 2) шейные рефлексы — возникающие с проприо рецептор ов мышц шеи при изменении положения головы по отношению к туловищу, и 3) выпрямительные рефлексы — с рецептор ов кожи, вестибулярного аппарата и сетчатки глаза. Например, при отклонении головы назад повышается тонус мышц-разгибателей спины, а при наклоне вперед — тонус мышц-сгибателей (лабиринтный рефлекс). С помощью выпрямительного рефлекса происходят последовательные сокращения мышц шеи и туловища, а затем и конечностей. Этот рефлекс обеспечивает вертикальное положение тела теменем кверху. У человека он проявляется, например, при нырянии.

Стато-кинетические рефлексы компенсируют отклонения тела при ускорении ши замедлении прямолинейного движения (лифтный рефлекс), а также при вращениях (отклонения головы, тела и глаз в сторону, противоположную движению). Перемещение глаз со скоростью вращения тела, но в противоположную сторону, и быстрое их возвращение в исходное положение — нистагм глаз — обеспечивает сохранение изображения внешнего мира на сетчатке глаз и тем самым зрительную ориентацию.

Роль различных отделов ЦНС в регуляции движений

Спинной мозг обеспечивает протекание многих элементарных двигательных рефлексов, включение которых в сложные двигательные акты и регуляция по мощности, пространственной ориентации и моменту включения осуществляется вышележащими отделами головного мозга под контролем коры больших полушарий.

Спинной мозг осуществляет ряд элементарных двигательных рефлексов: рефлексы на растяжение (миотатические и сухожильные рефлексы, например, коленный рефлекс), кожные сгибательные рефлексы (например, защитный рефлекс отдергивания конечности при уколах, ожогах), разгибательные рефлексы (рефлекс отталкивания от опоры, лежащий в основе стояния, ходьбы, бега), перекрестные рефлексы и др.

Элементарные двигательные рефлексы включаются в более сложные двигательные акты — регуляцию деятельности мышц-антагонистов, ритмических и шагательных рефлексов, лежащих в основе локомоций и других движений.

Для сгибательного движения в суставе необходимо не только сокращение мышц-сгибателей, по и одновременное расслабление мышц-разгибателей. При этом в мото нейрон ах мышц-сгибателей возникает процесс возбуждения, а в мото нейрон ах мышц-разгибателей — торможение. При разгибании сустава, наоборот, тормозятся центры сгибателей и возбуждаются центры разгибателей. Такие координационные взаимоотношения между спинальными моторными центрам и названыреципрокной (взаимосочетанной) иннервацией мышц-антагонистов. Однако реципторные отношения между центрами мышц-антагонистов в необходимых ситуациях (например, при фиксации суставов, при точностных движениях) могут сменяться одновременным их возбуждением.

Нейроны промежуточной продольной зоны коры мозжечка согласуют позные реакции с движениями. Они выполняют также точные расчеты по ходу движений, необходимые для коррекции ошибок и адаптации моторных программ к текущей ситуации. Программирование каждого последующего шага осуществляется ими на основе анализа предыдущего. Кроме того производится согласование движений рук и ног, и особенно — регуляция активности мышц-разгибателей, обеспечивающих опорную фазу движения. Значение мозжечка в четком поддержании темпа ритмических движений объясняют геометрически правильным чередованием рядов эфферентных клеток Пуркинье и походящих к ним афферентных волокон.

К управлению ритмическими движениями непосредственное отношение имеют активирующие и угнетающие отделы ретикулярной формации, влияющие на силу и темп сокращения мышц, а также подкорковые ядра, которые организуют автоматическое их протекание и содружественные движения конечностей. Включение древних форм ритмических движений (циклоидных) в акт письма позволяет человеку перейти от отдельного начертания букв к обычной письменной скорописи. То же самое происходит при освоении акта ходьбы — с переходом от отдельных шагов к ритмической походке. Плавность ритмических движений, четкое чередование реципрокных сокращений мышц обеспечивают премоторные отделы коры.

В высшей регуляции произвольных движений важнейшая роль принадлежит передне-лобным областям (передним третичным полям). Здесь помимо обычных вертикальных колонок нейрон ов существует принципиально новый тип функциональной единицы — в форме замкнутого нейрон ного кольца. Циркуляция импульсов в этой замкнутой системе обеспечивает кратковременную память. Она сохраняет в коре возбуждение между временем прихода сенсорных сигналов и формированием ответной эфферентной команды. Такой механизм служит основой сенсомоторной интеграции при программировании движений, при осуществлении зрительно-двигательных реакций.

Функцией передне-лобной (третичной) области коры является сознательная оценка текущей ситуации и предвидение возможного будущего, выработка цели и задачи поведения, программирование произвольных движений, их контроль и коррекция. Соответствие выполняемых действий поставленным задачам придает движениям человека определенную целесообразность и о смысл енность. При поражении лобных долей движения человека становятся бес смысл енными.

Спецификой регуляции движений у человека является то, что они подчинены речевым воздействиям, т. е. могут программироваться лобными долями в ответ на поступающие извне словесные сигналы, а также благодаря участию внешней или внутренней речи ( мышлени я) самого человека. В этой функции принимают участие расположенные в левом полушарии человека сенсорный центр речи Вернике и моторный центр речи — центр Брока. Считают, что афферентная импульсация от речевой мускулатуры является важным ориентиром, дополняющим проприоцептивные сигналы от работающих мышц, а формирующиеся на речевой основе избирательные связи в коре облегчают составление моторных программ.

Эта управляющая система еще не развита у ребенка 2-3 лет. Она появляется лишь к 3-4 годам. Внешняя речь, сменяясь постепенно шепотом и переходя затем во внутреннюю речь, становится важным регулятором моторных действий взрослого человека.

Нисходящие моторные системы

Высшие отделы головного мозга осуществляют свои влияния па деятельность нижележащих отделов, в том числе спинного мозга, через нисходящие пути, которые группируют обычно в две основные нисходящие системы — пирамидную и экстрапирамидную.

В настоящее время предлагают подразделять основные нисходящие пути, исходя из расположения нервных окончаний в спинном мозге и функциональных различий, на следующие 2 системы: более молодую латерал ьную, волокна которой оканчиваются в боковых ( латерал ьных) частях спинного мозга и связанную преимущественно с мускулатурой дистальных звеньев конечностей (сюда относят корково-спинномозговую и красноядерно-спинномозговую системы), и древнююмедиальную, волокна которой оканчиваются во внутренних (медиальных) частях белого вещества, связанную главным образом с мускулатурой туловища и проксимальных звеньев конечностей, состоящую из вестибуло-спинномозговой и ретикуло-спинномозговой систем.

Пирамидная система выполняет 3 основные функции:

  • посылает мотонейропам спинного мозга импульсы — команды к движениям (пусковые влияния);
  • изменяет проведение нервных импульсов во вставочных спинальных нейрон ах, облегчая протекание нужных в данный момент спинномозговых рефлексов;
  • осуществляет контроль за потоками афферентных сигналов в нервные центры, выключая постороннюю информацию и обеспечивая обратные связи от работающих мышц.

Волокна пирамидной системы вызывают преимущественно возбуждение мото нейрон ов мышц-сгибателей, особенно влияя на отдельные мышцы и даже части мыши верхних конечностей, в частности на мышцы пальцев рук.


Рис. 1. Схема основных нисходящих путей регуляции двигательной деятельности
1 — быстрая подсистема и 2 — медленная подсистема корково-спиномозго-вого пути (пирамидного тракта); 3 — корково-красноядерно-спиномозговой путь. Латеральная система — I, 2, 3. Медиальная система — 4, 5. М — мото нейрон спинного мозга, получающий фазные (Фазн.) и тонические (Тонич.) возбуждающие (+) и тормозящие (-) влияния.


Источник: Основные принципы организации движений
Дата создания: 02.09.2016
Последнее редактирование: 02.09.2016

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.