Спинальные пути что это













  • Физиология
  • История физиологии
  • Методы физиологии

Восходящие и нисходящие пути спинного мозга

Проводниковая функция спинного мозга заключается в том, что через него проходят восходящие и нисходящие пути.

К восходящим путям относятся:

  • система задних канатиков (нежный и клиновидный пучки), являющихся проводниками кожно-механической чувствительности в продолговатый мозг;
  • спиноталамические пути, по которым импульсы от рецепторов поступают к таламусу;
  • спиномозжечковые пути (дорсальный и вентральный) участвуют в проведении импульсации, поступающей от кожных рецепторов и проприорецепторов в мозжечок.

К нисходящим путям относятся:

Название

Характеристика

Тонкий пучок Голля

Проприоцепторы сухожилий и мышц, часть тактильных рецепторов кожи, от нижней части тела

Клиновидный пучок Бурдаха

Пропрноцепторы сухожилий и мышц, часть тактильных рецепторов кожи от верхней части тела

Латеральный спиноталамический тракт

Болевая и температурная чувствительность

Вентральный спиноталамический тракт

Дорсальный спинно-мозжечковый тракт Флексига

Не перекрещенный — проприоцепция

Вентральный спинно-мозжечковый тракт Говерса

Дважды перекрещенный проприоцепция

Название

Характеристика

Латеральный кортикоспинальный пирамидный

Прямой передний кортикоспинальный пирамидный

Нервные волокна спинного мозга формируют его белое вещество и используются для проведения множества сигналов от сенсорных рецепторов в ЦНС, сигналов между нейронами самого спинного мозга и между нейронами спинного и других отделов ЦНС, а также от нейронов спинного мозга к эффекторным органам. Значительную часть проводящих путей спинного мозга составляют аксоны так называемых проприоспинальных нейронов. Волокна этих нейронов создают связи между спинальными сегментами и не выходят за пределы спинного мозга.

В качестве наиболее известных примеров простейших нейронных сетей проведения сигналов в спинном мозге и их использования для контроля работы эффекторных органов являются нейронные сети рефлекторных дуг соматического и вегетативного рефлексов. В проведении сигнала (нервного импульса), первоначально возникающего в рецепторном нервном окончании, принимают участие чувствительный нейрон и его волокна, вставочный и моторный нейроны.

Сигнал не только проводится нейронами в пределах сегмента, в которых они располагаются, но обрабатывается и используется для осуществления рефлекторной реакции на раздражение рецептора.

Сигналы, возникающие в рецепторах поверхности тела, мышцах, сухожилиях, внутренних органах, проводятся также в вышележащие структуры ЦНС но волокнам канатиков (столбов) спинного мозга, называемых восходящими (чувствительными) проводящими путями (табл. 1). Эти пути образуются волокнами (аксонами) чувствительных нейронов, тела которых располагаются в спинальных ганглиях, и вставочных нейронов, тела которых находятся в задних рогах спинного мозга.

Таблица 1. Основные восходящие чувствительные пути ЦНС

Название

Начало, 1-й нейрон

Локализация в спинном мозге

Окончание

Функция

Аксоны чувствительных нейронов

Медиальный и задний канатики

Соматосенсорная кора противоположного полушария. поля 1. 2. 3

Проприоцептивные сигналы (осознаваемые)

Аксоны чувствительных нейронов

Латеральный и задний канатики

Соматосенсорная кора противоположного полушария, поля 1, 2,3

Проприоцептивные сигналы (осознаваемые)

Ипсилатеральное ядро Кларка

Кора иненлатерального полушария мозжечка

Проприоцептивные сигналы (неосознаваемые)

Контрлатеральный задний рог

Кора контрлатерального полушария мозжечка

Проирноцепгивные сигналы (неосознаваемые)

Контрлатеральный задний рог

Таламус, соматосенсорная кора

Сигналы болевой температурной чуствительности

Контрлатеральный задний рог

Латеральный и передний канатики

Таламус, соматосенсорная кора

Ход волокон, проводящих сигналы от рецепторов различной чувствительности (модальности), неодинаков. Например, проводящие пути от проприорецепторов проводят в мозжечок и кору головного мозга сигналы о состоянии мышц, сухожилий, суставов. Волокна этого пути являются аксонами чувствительных нейронов спинальных ганглиев. Войдя через задние корешки в спинной мозг, они по той же стороне спинного мозга (не совершая перекреста), в составе тонкого и клиновидного пучков, восходят до нейронов продолговатого мозга, где заканчиваются образованием синапса и передают информацию на второй афферентный нейрон пути (рис. 1).

Этот нейрон проводит обработанную информацию по аксону, переходящему на противоположную сторону, к нейронам ядер таламуса. После переключения на нейронах таламуса информация о состоянии двигательного аппарата проводится к нейронам постцентральной области коры мозга и используется для формирования ощущений о степени напряжения мышц, положения конечностей, угла сгибания в суставах, пассивного движения, вибрации.

В составе тонкого пучка проходит также часть волокон от рецепторов кожи, проводящих информацию, используемую для формирования осознаваемой тактильной чувствительности в виде прикосновения, давления, вибрации.

Другие спинальные чувствительные пути образованы аксонами вторых афферентных (вставочных) нейронов, тела которых находятся в задних рогах спинного мозга. Аксоны этих нейронов в пределах своего сегмента совершают перекрест и по противоположной стороне спинного мозга в составе латерального спиноталамического пути идут к нейронам таламуса.


Рис. 1. Схема хода проводящих путей от проприорецепторов, тактильных, температурных и болевых рецепторов к стволу и коре мозга

В составе этого пути проходят волокна, проводящие сигналы болевой и температурной чувствительности, а также часть волокон, проводящая сигналы тактильной чувствительности (см. рис. 1).

В боковых канатиках проходят также передний и задний спиномозжечковые тракты. Они проводят сигналы от проприорецепторов к мозжечку.

Сигналы по восходящим чувствительным путям проводятся также в центры АНС, ретикулярную формацию ствола мозга и другие структуры ЦНС.

К нейронам спинного мозга поступают сигналы нейронов вышерасположенных структур головного мозга. Они следуют по аксонам нервных клеток, формирующих нисходящие (главным образом двигательные) проводящие пути, используемые для контроля тонуса мышц, формирования позы и организации движений. Важнейшими среди них являются кортикоспинальный (пирамидный), руброспинальный, ретикулоспинальный, вестибулоспинальный и тектоспинальный пути (табл. 2).

Таблица 2. Основные нисходящие эфферентные пути ЦНС

Название пути

Начало, 1-й нейрон

Локализация в спинном мозге

Окончание

Функция

Контрлатеральная кора мозга

Инейлатеральный вентральный и дорсальный рога

Контроль движений и модуляция чувствительности

Ипсилатсральная кора мозга

Контралатеральный вентральный и

Контроль движений и модуляция чувствительности

Контрлатеральное красное ядро среднего мозга

Ипсилатеральный вентральный рог

Ипсилатеральное, латеральное вестибулярное ядро

Ипсилатеральный вентральный рог

Контроль мышц, поддерживающих позу и баланс тела

Ипси-и- контрлатеральные медиальные вестибулярные ядра

Ипсилатеральный вентральный рог

Положение головы на вестибулярные сигналы

Ретикулярная формация моста и

Латеральный и передний канатики

Ипсилатеральный вентральный рог и промежуточная зона

Контроль движений и позы, модуляция чувствительности

Контрлатеральный верхний бугорок

Ипсилатеральный вентральный рог

Положение головы, связанное с движениями глаз

В составе кортикоспинального пути выделяют латеральный, волокна которого идут в боковых канатиках белого вещества спинного мозга, и передний — в передних канатиках. Кортикоспинальный путь сформирован аксонами пирамидных нейронов моторных областей коры больших полушарий, которые заканчиваются синапсами в основном на вставочных нейронах спинного мозга. Небольшая часть волокон латерального кортикоспинального пути заканчивается синапсами непосредственно на а-мотонейронах спинного мозга, иннервирующих мышцы кисти и дистальные мышцы конечностей.

Руброспинальный, ретикулоспинальный, вестибулоспинальный и тектоспинальный пути образованы аксонами нейронов соответствующих ядер ствола мозга и их называют также экстрапирамидными. По этим путям преимущественно к вставочным нейронам и у-мотонейронам спинного мозга проводятся эфферентные нервные импульсы, используемые для поддержания тонуса мышц, позы и осуществления непроизвольных движений, совершающиеся за счет врожденных или приобретенных рефлексов. Через эти пути формируются условия для эффективного выполнения произвольных движений, инициируемых корой головного мозга.

Через спинной мозг проводятся сигналы от высших центров АНС к преганглионарным нейронам симпатической нервной системы, расположенным в боковых рогах его тораколюмбального отдела и к нейронам парасимпатической нервной системы, расположенным в сакральном отделе спинного мозга. Через эти пути спинного мозга поддерживаются тонус симпатической нервной системы и ее влияния на работу сердца, состояние просвета сосудов, работу желудочно-кишечного тракта и других внутренних органов, а также парасимпатической нервной системы и ее влияния на функции органов малого таза.

Начиная с уровня перекреста моторных волокон кортикоспинального тракта продолговатого мозга до уровня СЗ шейного отдела спинного мозга располагается спинальное ядро тройничного нерва, к нейронам которого нисходят через продолговатый мозг аксоны чувствительных нейронов, расположенных в тройничном ганглии. По ним в ядро поступают сигналы болевой чувствительности зубов, других тканей челюстей и слизистой полости рта, болевые, температурные и сигналы прикосновения с поверхности лица, тканей глаза и глазницы.

Аксоны нейронов спинального ядра тройничного нерва перекрещиваются и следуют в виде диффузного пучка к нейронам таламуса и к нейронам ретикулярной формации ствола мозга. При повреждениях афферентных волокон тройничного тракта и спинального ядра тройничного нерва может наблюдаться снижение или потеря болевой и температурной чувствительности на ипсилатеральпой стороне лица.

При нарушении целостности путей проведения афферентных и (или) эфферентных сигналов на уровне спинного мозга или других уровнях ЦНС у человека снижается или выпадает определенный вид чувствительности и (или) движений. Зная морфологические особенности строения перекреста волокон проводящих путей, можно с учетом характера нарушения чувствительности и (или) движений установить уровень повреждения ЦНС, вызвавший эти нарушения.

К вставочным и моторным нейронам спинного мозга по нисходящим путям проводятся сигналы от нейронов голубоватого пятна и ядра шва ствола мозга. Они используются для контроля мышечной активности, связанной с состояниями сна и бодрствования. К вставочным нейронам спинного мозга по нисходящим путям проводятся сигналы от нейронов околоводопроводного серого вещества. Эти сигналы и высвобождаемые из аксонов упомянутых нейронов нейромедиаторы используются для контроля болевой чувствительности.

Системы нервных волокон, проводящих импульсы от кожи и слизистых оболочек, внутренних органов и органов движения к различным отделам спинного и головного мозга, в частности к коре полушарий большого мозга, называются восходящими, или чувствительными, афферентными, проводящими путями. Системы нервных волокон, передающих импульсы от коры или нижележащих ядер головного мозга через спинной мозг к рабочему органу (мышце, железе и др.), называются двигательными, или нисходящими, эфферентными, проводящими путями.

Проводящие пути образованы цепями нейронов, причем чувствительные пути обычно состоят из трех нейронов, а двигательные - из двух. Первый нейрон всех чувствительных путей располагается всегда вне мозга, находясь в спинномозговых узлах или чувствительных узлах черепных нервов. Последний нейрон двигательных путей всегда представлен клетками передних рогов серого вещества спинного мозга или клетками двигательных ядер черепных нервов.

Чувствительные пути. Спинной мозг проводит четыре вида чувствительности: тактильную (чувство прикосновения и давления), температурную, болевую и проприоцептивную (от рецепторов мышц и сухожилий, так называемое суставно-мышечное чувство, чувство положения и движения тела и конечностей).

Отростки вторых нейронов через комиссуру спинного мозга переходят на противоположную сторону (образуют перекрест) и поднимаются в составе бокового канатика спинного мозга в продолговатый мозг. Там они примыкают к медиальной чувствительной петле и идут через продолговатый мозг, мост и ножки мозга к латеральному ядру таламуса, где переключаются на 3-й нейрон. Отростки клеток ядер таламуса образуют таламокортикальный пучок, проходящий через заднюю ножку внутренней капсулы к коре постцентральной извилины (область чувствительного анализатора). В результате того что волокна по пути перекрещиваются, импульсы от левой половины туловища и конечностей передаются в правое полушарие, а от правой половины - в левое.

Передний спиноталамический путь состоит из волокон, проводящих тактильную чувствительность, он проходит в переднем канатике спинного мозга.

Центральный отросток в составе заднего корешка входит в спинной мозг и заканчивается в клетках ядра, расположенного у основания заднего рога (2-й нейрон). Отростки вторых нейронов поднимаются в дорсальной части бокового канатика этой же стороны и через нижние ножки мозжечка идут к клеткам коры червя мозжечка. Волокна переднего спиномозжечкового пути (Говерса) образуют перекрест дважды; в спинном мозге и в области верхнего паруса, а затем через верхние ножки мозжечка достигают клеток коры червя мозжечка.

Проприоцептивный путь к коре больших полушарий представлен двумя пучками: нежным (тонким) и клиновидным. Нежный пучок (Голля) проводит импульсы от проприорецепторов нижних конечностей и нижней половины тела и лежит медиально в заднем канатике. Клиновидный пучок (Бурдаха) примыкает к нему снаружи и несет импульсы от верхней половины туловища и от верхних конечностей. Второй нейрон этого пути лежит в одноименных ядрах продолговатого мозга. Их отростки образуют перекрест в продолговатом мозге и соединяются в пучок, называемый медиальной чувствительной петлей. Она доходит до латерального ядра таламуса (3-й нейрон). Отростки третьих нейронов через внутреннюю капсулу направляются в чувствительную и частично двигательную зоны коры.

Двигательные пути представлены двумя группами.

1. Пирамидные (кортико-спинальный и кортико-ядерный, или кортико-бульбарный) пути, проводящие импульсы от коры к двигательным клеткам спинного и продолговатого мозга, являющиеся путями произвольных движений.

2. Экстрапирамидные, рефлекторные двигательные пути, входящие в состав экстрапирамидной системы.

Пирамидный, или кортико-спинальный путь начинается от больших пирамидных клеток (Беца) коры верхних 2/3 предцентральной извилины и околоцентральной дольки, проходит через внутреннюю капсулу основание ножек мозга, основание моста, пирамиды продолговатого мозга. На границе со спинным мозгом он разделяется на боковой и передний пирамидные пучки. Боковой (большой) образует перекрест и спускается в боковом канатике спинного мозга, заканчиваясь на клетках переднего рога. Передний не перекрещивается и идет в переднем канатике. Образуя посегментный перекрест, его волокна также заканчиваются на клетках переднего рога. Отростки клеток переднею рога образуют передний корешок, двигательную порцию спинномозгового нерва и заканчиваются в мышце двигательным окончанием.

Кортико-ядерный путь начинается в нижней трети предцентральной извилины, идет через колено (изгиб) внутренней капсулы и заканчивается на клетках двигательных ядер черепных нервов противоположной стороны. Отростки клеток двигательных ядер образуют двигательную порцию соответствующего нерва.

К рефлекторным двигательным путям (экстрапирамидным) относятся красноядерно-спинномозговой (руброспинальный) путь - от клеток красного ядра среднего мозга, тектоспиналъный путь - от ядер холмиков пластинки крыши среднего мозга (четверохолмия), связанный со слуховыми и зрительными восприятиями, и вестибуло-спинальный - от вестибулярных ядер из ромбовидной ямки, связанный с поддержанием равновесия тела.


Спинной мозг по своей физиологии отличается высокой организованностью и специализацией. Именно он проводит множество сигналов от периферических чувствительных рецепторов в мозг и обратно сверху вниз. Это возможно благодаря тому, что есть хорошо организованные пути спинного мозга. Мы рассмотрим некоторые их виды, расскажем, где располагаются проводящие пути спинного мозга, что они содержат.


Спина – зона нашего организма, где располагается позвоночник. В недрах крепких позвонков надежно спрятан мягкий и нежный ствол спинного мозга. Именно в спинном мозге есть уникальные пути, которые состоят из нервных волокон. Они являются главными проводниками информации с периферии к ЦНС. Первым их обнаружил выдающийся русский физиолог, невропатолог, психолог Сергей Станиславович Бехтерев. Он описал их роль для животного и человека, строение, участие в рефлекторной деятельности.

Пути спинного мозга бывают восходящими, нисходящими. Они представлены в таблице.

  • Задние канатики. Они образуют целую систему. Это клиновидный и нижний пучки, через которые кожно-механические афферентные и двигательные сигналы проходят в продолговатый мозг.
  • Пути спиноталамические. По ним сигналы от всех рецепторов отправляются в головной мозг к таламусу.
  • Спиномозжечковые проводят импульсы в мозжечок.

  • Кортикоспинальный (пирамидный).
  • Пути экстрапирамидные, которые обеспечивают связь ЦНС со скелетными мышцами.

Функции

Проводящие пути спинного мозга образованы аксонами – окончаниями нейронов. Анатомия их состоит в том, что аксон очень длинный и соединяется с другими нервными клетками. Проекционные проводящие пути головного и спинного мозга проводят огромное количество нервных сигналов от рецепторов к ЦНС.

В этом сложном процессе участвуют нервные волокна, расположенные практически по всей длине спинного мозга. Сигнал проводится между нейронами и от разных отделов ЦНС к органам. Проводящие пути спинного мозга, схема которых достаточно запутана, обеспечивают беспрепятственное прохождение сигнала от периферии в ЦНС.

Они состоят в основном из аксонов. Эти волокна способны создавать связи между сегментами спинного мозга, находятся лишь в нем и не выходят за его пределы. Так обеспечивается контроль эффекторных органов.

Самая простая нейронная сеть – это рефлекторные дуги, которые обеспечивают вегетативный и соматический процессы. Первоначально нервный импульс возникает в окончании рецептора. Далее участвуют волокна чувствительного, вставочного и моторного нейрона.


Нейроны проводят сигнал в своем сегменте, а также обеспечивают его обработку и реакцию ЦНС на раздражение определенного рецептора.

В наших мышцах, органах, сухожилиях, рецепторах каждую секунду возникают сигналы, которые требуют немедленной обработки со стороны ЦНС. Туда они проводятся по специальным канатикам спинного мозга. Эти пути называют чувствительными или восходящими. Восходящие пути спинного мозга соединяются с рецепторами по периферии всего тела. Их образуют аксоны нейронов чувствительного типа. Тела этих аксонов расположены в спинальных ганглиях. Также участвуют вставочные нейроны. Их тела расположены в задних рогах (спинной мозг).

Как рождается осязание

Волокна, которые обеспечивают чувствительность, проходят разный путь. Например, от проприорецепторов пути направляются в мозжечок, кору. В эту область они направляют сигнал о том, в каком состоянии находятся суставы, сухожилия, мышцы.

Этот путь составляют аксоны нейронов чувствительного типа. Афферентный нейрон обрабатывает полученный сигнал и при помощи аксона проводит его к таламусу. После обработки в таламусе информация о двигательном аппарате направляется к постцентральной зоне коры. Тут происходит формирование ощущений о том, насколько напряжены мышцы, в каком положении находятся конечности, под каким углом согнуты суставы, есть ли вибрация, пассивные движения.

В тонком пучке также есть волокна, которые связаны с кожными рецепторами. Они проводят сигнал, который формирует информацию о тактильной чувствительности при вибрации, давлении, прикосновении.


Аксоны вторых вставочных нейронов образуют другие чувствительные пути. Область расположения тел этих нейронов – задние рога (спинной мозг). В своих сегментах эти аксоны создают перекрест, потом они по противоположной стороне направляются к таламусу.

В этом пути есть волокна, которые обеспечивают температурную, болевую чувствительность. Также здесь находятся волокна, которые участвуют в чувствительности тактильной. Нейроны, расположенные в спинном мозге, воспринимают информацию от структур головного мозга.

Экстрапирамидные нейроны участвуют в образовании руброспинального, ретикулоспинального, вестибулоспинального, тектоспинального путей. По всем перечисленным путям проходят нервные эфферентные импульсы. Они отвечают за поддержание мышц в тонусе, выполнение различных непроизвольных движений, позу. В этих процессах участвуют приобретенные или врожденные рефлексы. В перечисленных путях происходит формирование условий для выполнения всех произвольных движений, которыми управляет кора головного мозга.

Спинной мозг проводит все сигналы, которые поступают от центров ВНС к нейронам, которые составляют симпатическую нервную систему. Эти нейроны располагаются в боковых рогах спинного мозга.

Также в процессе участвуют нейроны из парасимпатической нервной системы, которые локализуются тоже в спинном мозге (сакральный отдел). На указанные пути возложена функция поддержания в тонусе симпатической нервной системы.

Симпатическая и парасимпатическая нервные системы

Значение симпатической нервной системы трудно переоценить. Без нее невозможна работа сосудов, сердца, ЖКТ, всех внутренних органов.

Парасимпатическая система обеспечивает функционирование органов малого таза.

Тройничный нерв

Чувство боли – одно из важнейших для нашей жизнедеятельности. Разберемся в том, как происходит процесс передачи сигнала через тройничный нерв.

Там, где моторные волокна кортикоспинального тракта перекрещиваются, до шейного отдела проходит спинальное ядро одного из самых крупных нервов – тройничного. Через область продолговатого мозга к его нейронам нисходят аксоны чувствительных нейронов. Именно от них отправляется в ядро сигнал о боли в зубах, челюстях, полости рта. Через тройничный нерв проходят сигналы от лица, глаз, глазниц.


Тройничный нерв крайне важен для получения тактильных ощущений от области лица, ощущения температуры. Если он поврежден, человек начинает страдать от сильнейшей боли, которая постоянно возвращается. Тройничный нерв очень крупный, он состоит из множества афферентных волокон и ядра.

Нарушения проводимости и их последствия

Случается так, что пути проведения сигналов могут нарушаться. Причины таких нарушений разные: опухоли, кисты, травмы, заболевания и т.д. Проблемы могут наблюдаться в разных зонах СМ. В зависимости от того, какая зона поражена, человек теряет чувствительность определенной части своего тела. Также могут появляться сбои опорно-двигательного аппарата, а при тяжелых поражениях больного может парализовать.

Крайне важно знать строение афферентных путей, ведь это позволяет определить, в какой зоне случилось повреждение волокон. Достаточно определить, в какой части тела нарушилась чувствительность или движения, чтобы сделать вывод, в каком пути мозга случилась проблема.

Мы достаточно схематично описали анатомию путей спинного мозга. Важно понять, что именно они ответственны за проведение сигналов от периферии нашего организма к ЦНС. Без них невозможно обработать информацию от зрительных, слуховых, обонятельных, тактильных, двигательных и других рецепторов. Без локомоторной функции нейронов и путей невозможно было бы совершить самое простое рефлекторное движение. Также они отвечают за работу внутренних органов, систем.

Пути спинного мозга лежат вдоль всего позвоночника. Они способны образовывать сложную и очень эффективную систему по обработке огромного количества поступающей информации, брать самое активное участие в мозговой деятельности. Важнейшую роль при этом выполняют направленные вниз, вверх и в стороны аксоны. Эти отростки преимущественно и составляют белое вещество.

Особенность строения путей спинного мозга означает, что необходимо прилагать максимум усилий, чтобы сохранить его здоровье и целостность. Каждая его составляющая помогает организму осуществлять жизненно важные процессы, располагать необходимой информацией и мгновенно обрабатывать ее. Если травмировать позвоночник, можно нарушить это хрупкое равновесие.

Существуют следующие нисходящие проводящие пути:
• корково-спинномозговой проводящий путь (пирамидный проводящий путь);
• ретикуло-спинномозговой проводящий путь (экстрапира-мидный путь);
• преддверно-спинномозговой проводящий путь;
• покрышечно-спинномозговой проводящий путь;
• шовно-спинномозговой проводящий путь;
• проводящие пути аминергических систем ЦНС;
• проводящие пути вегетативной нервной системы.

Корково-спинномозговой проводящий путь

Корково-спинномозговой проводящий путь представляет собой крупный проводящий путь произвольной двигательной активности. Около 40 % его волокон начинается из первичной моторной коры прецентральной извилины. Остальные волокна берут начало из дополнительной моторной области на медиальной стороне полушария, премоторной коры головного мозга на латеральной стороне полушария, соматической сенсорной коры, коры теменной доли и коры поясной извилины. Волокна от двух вышеупомянутых сенсорных центров заканчиваются на чувствительных ядрах ствола головного мозга и спинного мозга, где они регулируют передачу чувствительных импульсов.

Корково-спинномозговой проводящий путь спускается вниз через лучистый венец и заднюю ножку внутренней капсулы к стволу головного мозга. Затем он проходит в ножке (головного мозга) на уровне среднего мозга и базилярной части моста, достигая продолговатого мозга. Здесь он образует пирамиду (отсюда название — пирамидный проводящий путь).


Демонстрация хода волокон пирамидного пути с левой стороны.
Дополнительная моторная область на медиальной стороне полушария.
Стрелкой показан уровень перекреста пирамид. Чувствительные нейроны выделены синим цветом.

Коронарный срез бальзамированного головного мозга пациента с последующей обработкой сульфатом меди (окраска по Маллигану),
демонстрирующий неокрашенные корково-спинномозговые волокна, идущие через ядра моста в сторону пирамид.

Характеристика волокон корково-спинномозгового пути выше уровня спинномозгового перехода:

• около 80 % (70-90 %) волокон переходят на противоположную сторону на уровне перекреста пирамид;

• эти волокна спускаются по противоположной стороне спинного мозга и составляют латеральный корково-спинномозговой проводящий путь (перекрещивающийся корково-спинномозговой проводящий путь); оставшиеся 20 % волокон не перекрещиваются и продолжают спускаться вниз в передней части спинного мозга;

• половина из этих неперекрещивающихся волокон вступает в передний/вентральный корково-спинномозговой проводящий путь и располагается в вентральном/переднем канатике спинного мозга на шейном и верхнем грудном уровнях; данные волокна переходят на противоположную сторону на уровне белой спайки и иннервируют мышцы передней и задней стенок брюшной полости;

• другая половина вступает в латеральный корково-спинномозговой проводящий путь на своей половине спинного мозга.


Пирамидный проводящий путь.
КСП — корково-спинномозговой проводящий путь;
ПКСТ — передний корково-спинномозговой проводящий путь;
ЛКСП — латеральный корково-спинномозговой проводящий путь.
Обратите внимание: показан только двигательный компонент; компоненты теменной доли опущены.

Клетки-мишени латерального корково-спинномозгового пути:

Двигательная единица — это комплекс, состоящий из нейрона переднего рога спинного мозга и всех мышечных волокон, которые этот нейрон иннервирует. Нейроны малых двигательных единиц избирательно иннервируют небольшое количество мышечных волокон и участвуют в выполнении тонких и точных движений (например, при игре на пианино). Нейроны переднего рога, иннервирующие крупные мышцы (например, большую ягодичную мышцу), способны по отдельности вызвать сокращение сотни мышечных клеток сразу, так эти мышцы отвечают за грубые и простые движения.

Фракционирование имеет большое значение при выполнении привычных движений, таких как застегивание пальто или завязывание шнурков. Травматическое или другое повреждение корковомотонейронной системы на любом уровне влечет за собой утрату навыков выполнения привычных движений, которые затем редко поддаются восстановлению.

При выполнении данных движений α- и γ-мотонейроны активируются совместно через латеральный корково-спинномозговой проводящий путь таким образом, что веретена мышц, первично задействованных в движении, посылают импульсы об активном растяжении, а веретена мышц-антагонистов — о пассивном растяжении.


Продолговатый мозг и верхние отделы спинного мозга, вид спереди.
Продемонстрированы три группы нервных волокон левой пирамиды.

б) Клетки Реншоу. Функции синапсов латерального корково-спинномозгового пути на клетках Реншоу довольно многочисленны, так как торможение на некоторых клеточных синапсах главным образом происходит за счет интернейронов типа Iа; на других синапсах данную функцию выполняют клетки Реншоу. Вероятно, наиболее важная функция — контроль совместного сокращения основных движущих мышц и их антагонистов для фиксации одного или нескольких суставов, например при работе с кухонным ножом или лопатой. Совместное сокращение происходит за счет инактивации ингибирующих интернейронов Iа клетками Реншоу.

в) Возбуждающие интернейроны. Латеральный корково-спинно-мозговой проводящий путь влияет на деятельность двигательных нейронов, расположенных в средней части серого вещества и в основании переднего рога спинного мозга, иннервирующих осевые (позвоночные) мышцы и мышцы проксимальных отделов конечностей посредством возбуждающих интернейронов. г) la-ингибирующие интернейроны. Эти нейроны также расположены в средней части серого вещества спинного мозга и активируются латеральным корково-спинномозговым путем в первую очередь при совершении произвольных движений.

Активность Ia-интернейронов способствует расслаблению мышц-антагонистов до того, как начнут сокращаться мышцы-агонисты. Кроме того, они вызывают рефрактерность мотонейронов мышц-антагонистов к стимуляции афферентами нервно-мышечного веретена при их пассивном растяжении во время движения. Последовательность процессов при произвольном сгибания коленного сустава показана на рисунке ниже.

С другой стороны, во время произвольного сгибания коленного сустава мышцы способствуют данному движению с помощью такого же механизма, но уже через рефлекс помощи. Изменение знака с отрицательного на положительный называют рефлексом перемены направления.)

д) Пресинаптические ингибиторные нейроны, обеспечивающие рефлекс растяжения. Рассмотрим движения спринтера. На каждом шаге сила тяжести тянет его тело вниз, на выпрямленное четырехглавой мышцей колено. В момент соприкосновения с землей все нервно-мышечные веретена в сокращенной четырехглавой мышце резко растягиваются, в результате чего возникает опасность разрыва мышцы. Сухожильный орган Гольджи обеспечивает некоторую защиту посредством внутреннего торможения, однако основной защитный механизм обеспечивает латеральный корково-спинномозговой путь через пресинаптическое торможение афферентов веретен вблизи их контакта с мотонейронами.

В то же время удлинение паузы до ахиллового рефлекса служит преимуществом в этой ситуации, так как происходит восстановление мотонейронов, иннервирующих заднюю часть голени, для следующего рывка. Предполагают, что степень подавления рефлекса растяжения со стороны латерального корково-спинномозгового пути зависит от конкретных движений.

е) Пресинаптическое ингибирование чувствительных нейронов первого порядка. В заднем роге серого вещества спинного мозга существует некоторое подавление передачи чувствительных импульсов в спиноталамический проводящий путь при совершении произвольных движений. Это происходит путем активации синапсов, образованных ингибирующими вставочными нейронами и первичными чувствительными нервными окончаниями.

Еще более тонкую регуляцию наблюдают на уровне тонкого и клиновидного ядер, где волокна пирамидного пути (после пересечения) способны усиливать передачу чувствительных импульсов во время медленных аккуратных движений или ослаблять ее во время совершения быстрых движений.

Видео урок анатомия пирамидных путей - tractus corticospinalis et corticonuclearis

Редактор: Искандер Милевски. Дата публикации: 15.11.2018

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.